This week

1. Appendix A.7: complex numbers
2. Application: impedance

The Riemann zeta-function
A complex number is a vector in \mathbb{R}^2.

In stead of \mathbb{R}^2 we write \mathbb{C}.

Rather than x- and y-axis, we call them the real axis and imaginary axis.

The complex number i is defined as $(0, 1)$.

Addition is defined termwise: if $z = (x, y)$ and $w = (u, v)$, then

$$z + w = (x + y, y + v)$$

Scalar multiplication is defined termwise: if $z = (x, y)$ and $\alpha \in \mathbb{R}$, then

$$\alpha z = (\alpha x, \alpha y)$$
Definition

Let \(z = (x, y) \) and \(w = (u, v) \) be two complex numbers. The product of \(z \) and \(w \) is defined as

\[
z \cdot w = (x \cdot u - y \cdot v, x \cdot v + y \cdot u)
\]

Examples:

- \((1, 2)(4, -1) = (1 \cdot 4 - 2(-1), 1(-1) + 2 \cdot 4) = (6, 7)\).
- \((2, 0)(3, -4) = (2 \cdot 3 - 0(-4), 2(-4) + 0 \cdot 3) = (2 \cdot 3, 2(-4)) = 2(3, -4)\).
- \(i^2 = i \cdot i = (0, 1)(0, 1) = (0 \cdot 0 - 1 \cdot 1, 0 \cdot 1 + 1 \cdot 0) = (-1, 0)\).

The real axis

Convention

Every real number \(x \) is identified with the complex number \((x, 0)\).

Examples: \(0 = (0, 0), 1 = (1, 0), -1 = (-1, 0)\).

The complex numbers on the real axis behave just like the real numbers in \(\mathbb{R} \):

- \(x + y \rightarrow (x, 0) + (y, 0) = (x + y, 0 + 0) = (x + y, 0) \).
- \(x - y \rightarrow (x, 0) - (y, 0) = (x - y, 0 - 0) = (x - y, 0) \).
- \(xy \rightarrow (x, 0)(y, 0) = (xy - 0 \cdot 0, x \cdot 0 + 0 \cdot y) = (xy, 0) \).
Real numbers are complex numbers

- By identifying \(x \in \mathbb{R} \) with the complex number \((x, 0)\), we regard the points on the real axis as the real number line.

\[i^2 = -1 \]

- The complex numbers are an expansion of the real numbers:

\[\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C} \]

Algebraic laws for sum, difference and product

- Let \(z, w \) and \(u \) be complex numbers. Define \(z - w \) and \(-z \) in the usual way, then

1. \(z + w = w + z \)
2. \(z + w + u = z + (w + u) = (z + w) + u \)
3. \(z + 0 = z \)
4. \(-z = (-1)z \)
5. \(z - w = z + (-w) \)
6. \(z - z = 0 \)
7. \(zw = wz \)
8. \(z \cdot 1 = z \)
9. \(z \cdot 0 = 0 \)
10. \(zwu = z(wu) = (zw)u \)
11. \(z(w + u) = zw + zu \)
12. \(z(w - u) = zw - zu \)
The canonical form

Theorem

Let \(z = (x, y) \) be a complex number, with \(x \) and \(y \) real. Then

\[
z = x + i \, y.
\]

Proof:

\[
x + i \, y = (x, 0) + (0, 1)(y, 0)
= (x, 0) + (0 \cdot y - 1 \cdot 0, 0 \cdot 0 + 1 \cdot y)
= (x, 0) + (0, y) = (x, y) = z.
\]

Definition

The form \(x + i \, y \) is called the **canonical form** of \(z \).

Henceforth we will always write complex numbers in canonical form.

Canonical form for sum and multiplication

- Let \(z = x + i \, y \) and \(w = u + i \, v \) be two complex numbers, with \(x, y, u \) and \(v \) real. Then

\[
z + w = (x + i \, y) + (u + i \, v)
= x + u + i \, y + i \, v
= (x + u) + i(y + v).
\]

- For the product of \(z \) and \(w \) we have

\[
z \, w = (x + i \, y)(u + i \, v)
= x \, u + (i \, y)(i \, v) + x(i \, v) + (i \, y)u
= x \, u + i^2y \, v + i \, x \, v + i \, y \, u
= (x \, u - y \, v) + i(x \, v + y \, u).
\]
Definition

Let $z = x + iy$ be a complex number with x and y real. Then x is the **real part** of z and y is the **imaginary part** of z. We denote

$$x = \Re z \quad \text{and} \quad y = \Im z.$$
The absolute value

Definition

Let $z = x + iy$ be a complex number with x and y real. Then the absolute value of z is the distance of z to 0:

$$|z| = \sqrt{x^2 + y^2}.$$

- The definition is based on the Pythagorean theorem.
- The absolute value is sometimes called **modulus** or **norm**.

Properties of conjugation and absolute value

- Let z and w be complex numbers, then
 1. $\overline{z + w} = \overline{z} + \overline{w}$
 2. $\overline{z - w} = \overline{z} - \overline{w}$
 3. $\overline{zw} = \overline{z} \overline{w}$
 4. $|z|^2 = z \overline{z}$
 5. $|zw| = |z| |w|$
 6. $|z + w| \leq |z| + |w|$

- Property 6 is called the **triangular inequality**.
The real and imaginary part

Theorem

For every complex number \(z \) *the following holds:*

1. \(\text{Re} \, z = \frac{z + \bar{z}}{2} \)
2. \(\text{Im} \, z = \frac{z - \bar{z}}{2} \, i \)

■ Write \(z = x + iy \), then

\[
\begin{align*}
z + \bar{z} &= (x + iy) + (x - iy) = 2x = 2 \text{Re} \, z, \\
z - \bar{z} &= (x + iy) - (x - iy) = 2iy,
\end{align*}
\]

\[
-\frac{1}{2} i (z - \bar{z}) = y = \text{Im} \, z.
\]

Exercises

Assignment: **IMM2 - Tutorial 6.1**
Problem

For arbitrary $z \neq 0$, find a complex number w such that $zw = 1$.

- Assume that $zw = 1$, then

$$\overline{w} z w = \overline{z} \Rightarrow |z|^2 w = \overline{z} \Rightarrow \frac{1}{z} = w = \frac{1}{|z|^2} \overline{z}$$

- The number w is called the \textbf{reciprocal of} z and is denoted as $\frac{1}{z}$.

- The reciprocal of z is sometimes denoted as z^{-1}.

- If $z = x + iy$ with x and y real, then

$$\frac{1}{z} = \frac{1}{|z|^2} \overline{z} = \frac{1}{x^2 + y^2} (x - iy) = \frac{x}{x^2 + y^2} - \frac{y}{x^2 + y^2} i.$$

Division

Definition

Let z and w be complex numbers. If $z \neq 0$ then the \textbf{quotient of} u and z is defined as the product of u and the reciprocal of z:

$$\frac{u}{z} = u \cdot \frac{1}{z}.$$

- Equivalently we can write $\frac{u}{z} = \frac{1}{|z|^2} u \overline{z}$.

- Practical approach: multiply numerator and denominator with \overline{z}:

$$u = \frac{u \overline{z}}{z \overline{z}}$$

and elaborate $u \overline{z}$.

- Example:

$$\frac{3 + i}{1 + 2i} = \frac{(3 + i)(1 - 2i)}{(1 + 2i)(1 - 2i)} = \frac{5 - 5i}{5} = 1 - i.$$
Algebraic laws for quotient

Let \(u \neq 0, \ v, \ z \neq 0 \) and \(w \) be complex numbers.

1. \(\frac{w}{1} = w \)

2. \(\frac{w}{z} \frac{v}{u} = \frac{w v}{z u} \)

3. \(\frac{1}{w/z} = \frac{z}{w} \) (for \(w \neq 0 \))

4. \(\frac{w}{z} = \frac{\bar{w}}{\bar{z}} \)

5. \(\frac{|w|}{|z|} = \frac{w}{z} \)

For all \(m \in \mathbb{Z} \) and \(n \in \mathbb{Z} \) the following holds:

1. \(z^m z^n = z^{m+n} \)

2. \((z^m)^n = z^{mn} \)

3. \(\frac{1}{z^m} = z^{-m} \)

4. \(z^n w^n = (zw)^n \)

5. \(\left(\frac{w}{z} \right)^n = \frac{w^n}{z^n} \)

Exercises

Assignment: IMM2 - Tutorial 6.2
The argument

Definition

The argument of a complex number $z \neq 0$ is the angle that the line through 0 and z makes with the positive real axis.

The argument of z is denoted as $\arg(z)$.

- The argument of 0 is not defined.
- The argument is expressed in radians.
- The argument is measured from the positive real axis.
- If the direction is counter-clockwise, the argument is positive.
- If the direction is clockwise, the argument is negative.
- The argument is determined up to a multiple of 2π.

The Euler function

Definition

The Euler function is the function that assigns to every real number φ the complex number

$$e^{i\varphi} = \cos \varphi + i \sin \varphi.$$

- The number $e^{i\varphi}$ lies on the unit circle: $|e^{i\varphi}| = 1$.
- The real part of $e^{i\varphi}$ is $\cos \varphi$, the imaginary part of $e^{i\varphi}$ is $\sin \varphi$.
- The complex number $e^{i\varphi}$ is the number on the unit circle with argument φ.
Theorem

For every real number φ and ψ we have

$$e^{i(\varphi+\psi)} = e^{i\varphi} e^{i\psi}$$

- Use trigonometry formulas to derive

$$e^{i(\varphi+\psi)} = \cos(\varphi + \psi) + i \sin(\varphi + \psi)$$
$$= \cos \varphi \cos \psi - \sin \varphi \sin \psi + i (\sin \varphi \cos \psi + \cos \varphi \sin \psi).$$

- Expand the right-hand side:

$$e^{i\varphi} e^{i\psi} = (\cos \varphi + i \sin \varphi) (\cos \psi + i \sin \psi)$$
$$= \cos \varphi \cos \psi + i^2 \sin \varphi \sin \psi + i \sin \varphi \cos \psi + i \cos \varphi \sin \psi$$
$$= \cos \varphi \cos \psi - \sin \varphi \sin \psi + i (\sin \varphi \cos \psi + \cos \varphi \sin \psi)$$
$$= e^{i(\varphi+\psi)}.$$

The Simpsons (from episode ‘Treehouse of Horror VI’)

The Euler function Cheat Sheet

1. $e^{i0} = 1$
2. $|e^{i\varphi}| = 1$
3. $e^{i(\varphi+\psi)} = e^{i\varphi} e^{i\psi}$
4. $(e^{i\varphi})^n = e^{in\varphi}$ for all $n \in \mathbb{Z}$.
5. $e^{i\varphi} = e^{-i\varphi} = \frac{1}{e^{i\varphi}}$
Theorem

Every complex number \(z \neq 0 \) can be written as the product of a positive real number and an Euler function value. In particular, if \(r = |z| \) and \(\varphi = \arg z \), then

\[
z = r e^{i\varphi}
\]

- Write \(z = x + i y \) with \(x \) and \(y \) real, then
 \[
 \cos \varphi = \frac{x}{r} \quad \text{and} \quad \sin \varphi = \frac{y}{r}.
 \]
- \(z = x + i y \)
 \[
 = r \cos \varphi + i(r \sin \varphi)
 = r(\cos \varphi + i \sin \varphi) = re^{i\varphi}.
 \]

Theorem

Let \(z \) and \(w \) be two complex numbers written in polar coordinates:

\[
z = r e^{i\varphi} \quad \text{and} \quad w = s e^{i\psi},
\]

then

\[
z w = rs e^{i(\varphi+\psi)} \quad \text{and (if } w \neq 0) \quad \frac{z}{w} = \frac{r}{s} e^{i(\varphi-\psi)}.
\]

- In other words:
 - the absolute value of \(z w \) is the **product** of \(|z| \) and \(|w| \),
 - the argument of \(z w \) is the **sum** of \(\arg z \) and \(\arg w \), and:
 - the absolute value of \(z/w \) is the **quotient** of \(|z| \) and \(|w| \),
 - the argument of \(z/w \) is the **difference** of \(\arg z \) and \(\arg w \).
Corollary

Let \(w = r e^{i\varphi} \). Then multiplication of an arbitrary complex number \(z \) with \(w \) can be constructed geometrically by scaling \(z \) with scale factor \(r \), and by rotating \(z \) over an angle \(\varphi \) about 0.

- **Example**: let \(w = \sqrt{3} + i = 2e^{i\pi/6} \), then \(zw \) is obtained by scaling \(z \) with factor 2, and by rotating \(z \) over an angle of 30°.

Exercises

Assignment: IMM2 - **Tutorial 6.3**

- **Rectangular form** is the same as canonical form.
- **Trigonometric form** is like polar form but with sine and cosine, and with a non-negative angle smaller than 360°, for example:

 \[
 z = 7\left(\cos(225°) + i\sin(225°)\right).
 \]

- MyLabsPlus uses \(\text{cis} \) (“cosine plus i sine”) to indicate Eulers function:

 \[
 \text{cis}(\varphi) = e^{i\varphi}.
 \]
In this part of the lecture we write j in stead of i.

Passive components

<table>
<thead>
<tr>
<th>Component</th>
<th>Relation (v(t)) vs. (i(t))</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistor</td>
<td>[v(t) = R i(t)]</td>
<td>Dissipates energy</td>
</tr>
<tr>
<td>Capacitor</td>
<td>[v(t) = \frac{1}{C} \int_{0}^{t} i(\tau) , d\tau] [i(t) = C v'(t)]</td>
<td>Stores energy in an electric field</td>
</tr>
<tr>
<td>Inductor</td>
<td>[v(t) = L i'(t)]</td>
<td>Stores energy in a magnetic field</td>
</tr>
</tbody>
</table>
Passive components

4.3

If you know $i(t)$, then $v(t)$ can be uniquely determined.

The component can therefore be regarded to be a **system**:

$$i(t) \rightarrow S \rightarrow v(t)$$

or abbreviated: $i(t) \mapsto v(t)$.

Example: for an inductor with inductance L we have

$$i(t) \mapsto Li'(t).$$

Complex signals

4.4

Definition

Let S be a system. Let $x(t)$ and $y(t)$ be signals for which S has the following responses:

$$x(t) \mapsto u(t) \quad \text{and} \quad y(t) \mapsto v(t).$$

Then the response of S to the input $x(t) + jy(t)$ is defined as

$$u(t) + jv(t).$$

Example: for an inductor with inductance L we have

$$\cos(\omega t) \mapsto -\omega L \sin(\omega t) \quad \text{and} \quad \sin(\omega t) \mapsto \omega L \cos(\omega t),$$

hence

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t) \mapsto -\omega L \sin(\omega t) + j\omega L \cos(\omega t)$$

$$= j\omega L \left(\cos(\omega t) + j \sin(\omega t) \right)$$

$$= j\omega L e^{j\omega t}.$$
Theorem

Passive components are linear and time invariant.

- Linearity means that if $x_1(t) \mapsto y_1(t)$ and $x_2(t) \mapsto y_2(t)$, then
 $$\alpha x_1(t) + \beta x_2(t) \mapsto \alpha y_1(t) + \beta y_2(t).$$
 for all α and β.

- Time invariance means that if $x(t) \mapsto y(t)$, then
 $$x(t - t_0) \mapsto y(t - t_0)$$
 for all t_0.

- Linear and time invariant systems are called LTI systems.
- Passive components can be regarded as systems: the input is the current $i(t)$ through the component, and the response is the voltage $v(t)$ over the component.
- Passive components are LTI systems.

The transfer function

For all LTI systems there exists a function $Z(\omega)$ such that

$$e^{j\omega t} \mapsto Z(\omega) e^{j\omega t}$$

- The function $Z(\omega)$ is called the transfer function.
- The transfer function does not depend on time, but can depend on the frequency ω.
- For passive components, where the input is the current $i(t)$ through the component, and the response is the voltage $v(t)$ over the component, the function $Z(\omega)$ is called the impedance of the component, usually denoted as Z.
- Example: for an inductor with inductance L we have
 $$e^{j\omega t} \mapsto j\omega L e^{j\omega t},$$
 so the impedance is $Z = j\omega L$.
Impedance

<table>
<thead>
<tr>
<th>Component</th>
<th>Impedance</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$Z = R$</td>
<td>Dissipates energy</td>
</tr>
<tr>
<td></td>
<td>$Z = \frac{1}{j\omega C}$</td>
<td>Stores energy in an electric field</td>
</tr>
<tr>
<td></td>
<td>$Z = j\omega L$</td>
<td>Stores energy in a magnetic field</td>
</tr>
</tbody>
</table>

Example

Let $v(t) = 5\cos(2\pi f t)$, where the frequency is equal to $f = 10$ kHz. The inductance L is 50 mH. Describe the current $i(t)$ through the inductor as a function of t. What is the amplitude of $i(t)$?

- The impedance of L is $Z = j\omega L$, where $\omega = 2\pi f$.
- Define $\dot{v}(t) = 5e^{j\omega t}$, then
 $$\dot{i}(t) = \frac{\ddot{v}(t)}{Z} = \frac{\ddot{v}(t)}{j\omega L} = -\frac{5j e^{j\omega t}}{\omega L} = -\frac{5j}{2\pi f L} \left(\cos(\omega t) + j\sin(\omega t) \right)$$
 $$= \frac{5}{2\pi f L} \left(\sin(\omega t) - j\cos(\omega t) \right).$$
- Hence $i(t) = \text{Re}(\dot{i}(t)) = \frac{5}{2\pi f L} \sin(2\pi f t) \approx 0.001591 \sin(2\pi f t)$.
- The amplitude of $i(t)$ is 1.591 mA.
Composition in series

- The following relations hold:
 \[v_1(t) = Z_1 i(t) \quad \text{and} \quad v_2(t) = Z_2 i(t). \]
- The voltage over clamps \(AB\) is
 \[v(t) = v_1(t) + v_2(t) = Z_1 i(t) + Z_2 i(t) = (Z_1 + Z_2)i(t). \]
- The replacement impedance for the series composition is \(v(t)/i(t)\), hence
 \[Z_{\text{ser}} = Z_1 + Z_2. \]

Composition in parallel

- The total current through the circuit is
 \[i(t) = i_1(t) + i_2(t) = \frac{v(t)}{Z_1} + \frac{v(t)}{Z_2} = \left(\frac{1}{Z_1} + \frac{1}{Z_2} \right) v(t). \]
- The reciprocal of the replacement impedance is \(i(t)/v(t)\), hence
 \[\frac{1}{Z_{\text{par}}} = \frac{1}{Z_1} + \frac{1}{Z_2}. \]
Example 4.11

- The for the impedance of an inductor L parallel to a capacitor C we have

$$\frac{1}{Z} = \frac{1}{j\omega L} + \frac{1}{1/j\omega C} = \frac{1}{j\omega L} + j\omega C = \frac{1 - \omega^2 LC}{j\omega L}.$$

- The impedance of the circuit is

$$Z = \frac{j\omega L}{1 - \omega^2 LC}.$$

The resonance frequency 4.12

- The impedance becomes very large if $\omega^2 \approx \frac{1}{LC}$.
- The frequency $\omega_{res} = \frac{1}{\sqrt{LC}}$ is called the resonance frequency.
Answer the following questions for the circuits (1), (2) and (3).

(a) What is the replacement impedance Z? Write Z in canonical form.

(b) What happens with $|Z|$ for high frequencies ($\omega \to \infty$)?

(c) What happens with $|Z|$ for low frequencies ($\omega \to 0$)?